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Two-body interatomic potentials in the Morse potential form have been developed for bismuth telluride, and
the potentials are used in molecular dynamics simulations to predict the thermal conductivity. The density-
functional theory with local-density approximations is first used to calculate the total energies for many
artificially distorted Bi2Te3 configurations to produce the energy surface. Then by fitting to this energy surface
and other experimental data, the Morse potential form is parameterized. The fitted empirical interatomic
potentials are shown to reproduce the elastic and phonon data well. Molecular dynamics simulations are then
performed to predict the thermal conductivity of bulk Bi2Te3 at different temperatures, and the results agree
with experimental data well.

DOI: 10.1103/PhysRevB.80.165203 PACS number�s�: 66.70.�f, 63.20.dk, 71.20.Nr

I. INTRODUCTION

There has been renewed interest on high-performance
thermoelectric materials in the last decades. Thermoelectric
energy conversion can convert waste heat to electricity with-
out any moving parts, therefore it could play a significant
role in addressing the energy challenge. The effectiveness of
a thermoelectric material is characterized by its figure of
merit ZT given by ZT=S2�T /�, where S, �, and T are the
Seebeck coefficient, electrical conductivity, and absolute
temperature, respectively. Here � is the thermal conductivity
which contains both electronic and lattice contributions �e
and �l. High-performance thermoelectric materials with high
ZT require high S and � /� ratio.

Bi2Te3 as well as its alloys have long been the best ther-
moelectric materials at room temperature with a ZT around
1. In the last decade significant enhancement of ZT has been
achieved using nanostructures. A ZT value of 2.4 was re-
ported in a p-type superlattice based on Bi2Te3 and Sb2Te3
when heat flows in the cross-plane direction.1 Bismuth tellu-
ride nanowires have been characterized for their enhanced
properties.2 More recently, a peak ZT value of 1.4 at T
=100 K was achieved in nanostructured bismuth antimony
telluride bulk alloys, which are made using ball milling and
hot pressing the nanoparticles into bulk ingots.3 And
Bi2Te3 /Sb2Te3 bulk nanocomposites with laminated struc-
ture was prepared by adopting a route involving hydrother-
mal synthesis and hot pressing to achieve ZT value of 1.47
around 450 K.4 The high ZT values in these nanostructures is
mostly attributed to the reduction in the lattice thermal con-
ductivity.

Despite the rapid progress in experiments, theoretical
studies on the thermal transport in both bulk and nanostruc-
tures of Bi2Te3 are rare,5,6 largely due to its heavy metal
elements and complicated crystal structure. So far, common
theoretical approaches for phonon thermal conductivity in-
clude Boltzmann transport equation �BTE�, Monte Carlo
simulations, and molecular dynamics �MD� simulations.
BTE and Monte Carlo methods rely on relaxation-time mod-
els to describe phonon scattering and they generally require
fitting of certain parameters to experimental data.6–8 Molecu-

lar dynamics does not need any prior knowledge of phonon
transport from experiment—only the interatomic potentials
are the inputs. However, the proper interatomic potentials are
often difficult to obtain, which is the case for Bi2Te3. Only
recently the first set of interatomic potentials for Bi2Te3 bulk
crystal were developed by Huang et al.5 and then used in
equilibrium molecular dynamics simulations to predict the
phonon thermal conductivity. Their prediction results agree
with experimental data quite well, although the three-body
potential forms are quite complicated.

In this work, we develop simple two-body interatomic
potentials for Bi2Te3 using density-functional theory �DFT�
and then use these potentials in molecular dynamics to pre-
dict the phonon thermal conductivity. We first perform ab
initio calculations to obtain the ground-state energies of a
series of distinct configurations. The energy surface data are
then used to parameterize the Morse potential form through
the least-square fitting. The obtained potentials are validated
in lattice-dynamics calculations via reproducing the materi-
al’s lattice and elastic properties. Molecular dynamics simu-
lations together with the Green-Kubo method are performed
and the lattice thermal conductivities are predicted over the
temperature range of 150–500 K.

II. ELECTRONIC STRUCTURE AND PHONON DENSITY
OF STATES

Bulk Bi2Te3 belongs to the space group D3d
5 �R3̄m� with a

rhombohedral lattice structure, along the trigonal axis of
which atoms are in the sequence of Te1-Bi-Te2-Bi-Te1 �Fig.
1�. The hexagonal conventional cell parameters are a
=4.369 Å and c=30.42 Å and the corresponding rhombo-
hedral unit-cell parameters9 are aR=10.45 Å, �R=24.13°
with Te1 and Bi atoms sitting at ��u , �u , �u� and
��v , �v , �v�, where u=0.399, v=0.792, respectively. To
compute the electronic structure, ab initio calculations were
performed employing the full-potential linearized augmented
plane wave method10 based on DFT �Ref. 11� using the code
WIEN2K.12 Due to the large atomic mass of Bi and Te atoms,
the spin-orbit coupling effects should be considered. Also, as
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suggested by Larson,13 the p1/2 corrections which may sig-
nificantly affect the electronic band structure have also been
considered for the Bi 6p and Te 5p states. The calculated
electronic band structure along high-symmetry lines is plot-
ted in Fig. 1, where the band-structure profiles are similar
with previous reports,13–17 indicating that our calculation can
properly describe the ground state. On the other hand, the
conduction-band minima and valence-band maxima for
Bi2Te3 are off the high-symmetry lines, as pointed out in
Refs. 14, 16, and 17. Although it is always favorable to ac-
curately predict the band-gap value, we did not make an
effort here since our molecular dynamics simulations will be
performed at the ground state.

We adopt the ABINIT code18 to study the phonon proper-
ties of bulk Bi2Te3 and then to validate the obtained inter-
atomic potentials by reproducing the phonon behaviors of
Bi2Te3. By starting from the experimental structure,9 the
Hartwigsen-Goedecker-Hutter pseudopotential is used with
local-density approximation �LDA� approximation to fully
relax the unit-cell structure, while the 4�4�4 shifted k grid
in the first Brillouin zone is adopted based on energy con-
vergence tests. The fully relaxed structure has rhombohedral
unit-cell parameters aR=10.27 Å, �R=24.49° and atomic pa-
rameters u=0.400, v=0.791. From the fully relaxed struc-
ture, calculations based on variational density-functional per-
turbation theory19 are performed and the obtained phonon
density of states �phonon DOS� is plotted in Fig. 2. As seen,
the ab initio calculations successfully reproduced the relative
strength and positions of the peaks, as well as the cutoff
frequencies in phonon DOS in comparison to experiments.
Calculations at Gamma point also reveal that the eigenfre-
quency of A1g phonon mode is 1.94 THz, which is in good
agreement with experimental values 1.88 THz.21 Since ab
initio calculation can reproduce the phonon properties of
Bi2Te3, it is used to generate total ground-state energy data
to allow parameterizing classical interatomic potentials for
phonon transport studies, as will be shown in detail in the
next section.

III. CLASSICAL INTERATOMIC POTENTIALS

Appropriate classical interatomic potentials are crucial in
MD predictions. The simplicity of the potentials is also im-
portant to ensure their better transferability. So far, few in-
teratomic potentials exist in literature for Bi2Te3. Simple har-
monic potentials were obtained by fitting to experiments22,23

but they are not suitable for the calculation of lattice thermal
conductivity due to the omitted anharmonic effects. The
three-body potentials developed by Huang et al.5 can predict
the thermal conductivity quite well but the potential form is
quite complicated. In light of this, we develop simpler two-
body interatomic potentials which include anharmonic inter-
actions by fitting to the energy surface from the ab initio
calculations.

The two-body potential ��rij� between atoms i and j sepa-
rated by a distance rij can be written in a form consisting of
a short-range interaction �s�rij� and a Coulombic term for the
long-range electrostatic interaction,

��rij� = �s�rij� + qiqj/rij , �1�

where qi and qj are effective charges of the ions in a partially
charged model, which is more appropriate for partially co-
valently bonded solids such as Bi2Te3. For the Coulombic
term, we have adopted the charge values obtained in Kull-
mann’s work23 which are 0.38, −0.26, and −0.24 for Bi, Te1,
Te2 atoms, respectively.

For the short-range interactions, we chose to use the
Morse potential form, which is known as a good approxima-
tion for vibrational structure of molecules

�s�rij� = De��1 − e�−a�rij−r0���2 − 1� . �2�

Here, De is the depth of the potential well, r0 is the equilib-
rium bond distance, and a is the measure of bond elasticity.
Treated with care, by considering only the nearest neighbors
for short-range interactions, we reached at a potential form
with different cutoff distances for different pairs, while the
long-range electrostatic interactions are treated by Ewald
summation method24 with uniform cutoff radius. The param-
eters in the potential functions are obtained by fitting to the
ab initio calculated total-energy surface. The fitting is a mul-

Te1

Te1

Te2
Bi

Bi

Te1

Te1

Te2
Bi

Bi

Te1

Te2
Bi

Bi

Te1
Bi

ab
c

Bi2Te3
block

Г Z F L

EF
En
er
gy
(e
V
)

0.0

1.0

2.0

-1.0

-2.0

FIG. 1. �Color online� Left: Bi2Te3 hexagonal conventional cell
structure; upper right: Bi2Te3 first Brillouin zone; lower right:
Bi2Te3 electronic band structure along some high-symmetry lines.
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FIG. 2. �Color online� Normalized phonon density of states of
Bi2Te3 with respect to frequency. Heavy solid curve: computed
classical interatomic potentials; light dashed curve: computed ab
initio; dashed curve: experimental values from Ref. 20.
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tivariable fitting procedure done with GULP.25

Using the parameterized potentials, we optimize the crys-
tal structure and predict the elastic properties, and then com-
pare the results to experimental data. Such procedures iterate
until the predicted results agree with experimental data well.
The final optimized parameters are listed in Table I. First of
all, it can be seen that Te1-Te1 bond has relatively small
bond energy but intermediate force constant, which origi-
nates from the combined nature of van der Waals interactions
across adjacent Te1-Te1 layers and covalent bonds within the
same layer. The combination of Te1-Te1 bond with electro-
static repulsive interactions between Te1 atoms results in an
ioniclike interaction as also observed by Huang and
Kaviany.5 On the other hand, the bond energies of the cross
plane Te1-Bi, Te2-Bi, and Te1-Te2 bonds are higher than
other bonds, which indicates that these bonds are more ionic.
However, the force constants of these bonds are generally
smaller, which is consistent with the fact that the elastic con-
stant C33 is less than C11. As a result, the vibrations in the
cross-plane direction is expected to be weaker than the in-
plane direction and so is the heat transport through phonon
channels.

By employing the fitted classical potentials, the elastic
constants and bulk modulus are obtained and compared to
Huang’s results and experimental data as listed in Table II. It
is seen that the computed elastic properties are in overall
good agreement with experiments, indicating that the poten-

tials can well describe the harmonic behaviors of Bi2Te3.
Also, by computing the dynamical matrix in GULP package,
the phonon DOS is predicted and shown in Fig. 2 in com-
parison with both the previously obtained phonon DOS from
ab initio calculations and the experiments.20 It is seen that
the classical interatomic potentials successfully reproduced
the lower-frequency acoustic portion of the phonon DOS as
compared to both ab initio calculations and experiments in
both relative strength and positions. However, on the other
hand, the predicted position for the second major peak is
relatively higher than the experimental value while the rela-
tive strength of those peaks around the second major peak is
in good agreement with ab initio calculations. Also, the pho-
non cutoff frequency is higher than that from both ab initio
results and experiments. A closer look at the phonon disper-
sions, as shown in Fig. 3, shows the comparison between
phonon dispersion computed from classical interatomic po-
tentials and the experimental relations. it is seen that the
acoustic-phonon modes of Bi2Te3 are well reproduced while
optical-phonon modes are generally overestimated. Espe-
cially for higher-frequency modes, the overestimation is sig-
nificant and results in a gap between 2.3 and 3 THz, which is
not seen in either experiment or ab initio calculations. This is
probably due to the oversimplified rigid-ion model that ig-
nores the polarization in Bi and Te atoms. This simplification
might greatly affect the dispersion relation of optical-phonon
modes, which should be considered as a limitation of our
classical potentials model, and core-shell model might im-
prove the phonon-dispersion relations. Despite the relatively
poor capability of the interatomic potentials in reproducing
optical-phonon dispersions, the dispersion of acoustic-
phonon modes are well predicted. Therefore, we expect that
the interatomic potentials can predict the lattice thermal con-
ductivity of Bi2Te3 reasonably well since the thermal trans-
port is dominated by acoustic-phonon modes while the
optical-phonon contributions are generally negligible.

IV. MOLECULAR DYNAMICS SIMULATIONS ON
LATTICE THERMAL CONDUCTIVITY

Phonon thermal conductivity of solids can be effectively
predicted using equilibrium molecular dynamics simulations

TABLE I. The short-range interatomic pair potential for Bi2Te3.
Here r is the separation between atom pair and rc is the cutoff
distance.

Interaction
De

�eV�
a

�1 /Å�
r0

�Å�
rc

�Å�

Te1-Bi 0.975 1.285 3.089 4.0

Te2-Bi 0.582 1.257 3.251 4.0

Te1-Te1 0.076 1.675 3.642 5.0

Bi-Bi 0.085 2.212 4.203 5.5

Te2-Te2 0.066 2.876 4.312 5.0

Te1-Te2 0.807 0.731 4.497 5.5

TABLE II. Comparison of computed elastic constants C�	 and
bulk modulus B with other works and experiments at temperature
0 K.

Ultrasonic
experimenta

Many-body
potential MDb This work

C11 74.4 69.0 75.4

C12 29.2 21.6 23.7

C14 15.4 12.3 11.0

C33 51.6 54.8 49.3

C44 29.2 28.8 23.5

C66 26.2 26.7 25.8

B 39.5 34.4 37.3

aReference 22.
bReference 5.

0

1

2

3

4

5

г Z
0

5

4

3

2

1

г Z

Fr
eq
ue
nc
y
(T
H
z)

Fr
eq
ue
nc
y
(T
H
z)

FIG. 3. Phonon dispersion of Bi2Te3 computed using classical
interatomic potentials along high-symmetry direction 
−Z �right�
compared to experimental phonon dispersion from Ref. 20 �left�.
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together with the Green-Kubo linear-response formulation.26

For the anisotropic system of interest here, phonon thermal
conductivity is given by27

�l,� =
1

kBVT2�
0

�

�S��t� · S��0�	dt, � = x,y,z , �3�

here V is the volume of simulation domain, T is the tempera-
ture, �S��t� ·S��0�	 is the heat current autocorrelation func-
tion �HCACF� along a particular direction, and � . . . 	 means
the ensemble average. For a pair potential, the heat current is
expressed as

S = 

i

eivi +
1

2

i,j

�Fij · vi�rij , �4�

where vi is the velocity of particle i, Fij is the forces between
two particles, and rij is the separation. The MD simulations
were performed with a system consisting of 6�6�1 hex-
agonal unit cells and involving 540 atoms. The simulations
in larger simulation domain produced very similar results.
The temperatures considered were from 150 to 500 K with
an interval of 50 K. The time step was chosen as 0.25 fs. The
Verlet leapfrog algorithm was adopted for the calculation
while the Nose-Hoover thermostat was used to control the
system temperature. The system was first simulated in an
constant number of atoms, volume, and temperature en-
semble for 250 ps to ensure it reached equilibrium at the
desired temperature; then, it was switched into an NVE en-
semble and ran for 250 ps to arrive in equilibrium, after
which HCACFs were computed and outputted. At each tem-
perature point, nine runs of MD simulations were done to
average and minimize statistical fluctuations, while in each
run, 2000 ps raw heat current data were obtained for the
calculation of HCACFs. Since the Debye temperature of
Bi2Te3 is only 155K,28 we do not make any attempt to in-
clude quantum effects for the temperature range of our inter-
est.

Based on the observed shape of the HCACF, and by real-
izing the optical-phonon contribution will mostly only ac-
count for the large oscillations in HCACFs and is tempera-
ture independent which is not the focus of current interest,
the HCACFs can be fitted to a sum of two exponential func-
tions as5,29

�S��t� · S��0�	 = Aac,sh,� exp�− t/�ac,sh,��

+ Aac,lg,� exp�− t/�ac,lg,�� , �5�

then the lattice thermal conductivity could be obtained by
performing direct integrals of these exponential functions.
Here the subscripts ac ,sh and ac , lg denote acoustic short-
range phonon and acoustic long-range phonon, respectively.
For Bi2Te3, the contribution from acoustic phonons has been
immersed in the optical-phonon oscillations while it has been
shown that the contribution of optical phonons to the thermal
conductivity of Bi2Te3 is negligible,5 however, the huge os-
cillations in HCACF do make the fitting to HCACF with
exponential decay form very difficult. Fortunately, on the
other hand, the lattice thermal conductivity can be defined as
the 
→0 limit of the Fourier transform of the HCACF,

�l,� = lim

→0

1

kBVT2�
0

�

�S��t� · S��0�	ei
tdt . �6�

Therefore, in order to better extract the acoustic-phonon sig-
nals, a Fourier low-pass filter with the cutoff frequency 0.5
THz can be used to remove the high-frequency optical-
phonon components in the HCACF and fit the low-frequency
acoustic part using the two-stage exponential decay function.
Although, as pointed out by Volz and Chen,30 small cutoff
frequency will affect the accuracy of the outcomes due to the
fact that the finite size of the simulation domain does not
allow very long-wavelength phonons to physically present,
an appropriate choice of the cutoff frequency which allows
exponential decay fitting to HCACF is expected to give ac-
curate lattice thermal conductivity value. In the present stud-
ies, the scale of the simulation domain is 6a, where a is the
lattice constant. By assuming that the longest phonon wave-
length that can exist in the domain is about the same scale of
the domain, then only phonon modes within �1 /6��2� /a
about the Brillouin-zone center are inaccurate, which corre-
spond to phonon frequencies less than 0.2 THz. Thus, with
the choice of cutoff frequency 0.5 THz, the correctness of the
results obtained here is not expected to be affected. Indeed,
by testing different choices of cutoff frequencies from 0.5 to
1.5 THz, only less than 1% difference in the results is seen,
which falls into the standard error from the fitting.

Figure 4 shows the typical HCACF obtained as function
of time before �inset of Fig. 4� and after applying Fourier
filter. As it is seen, after fast Fourier transform, the large
oscillations are greatly removed and exponential decay be-
havior of the HCACF has emerged, which allows for the
two-stage exponential decay fitting mentioned earlier. From
the fitting, the typical relaxation time for short-range acoustic
phonons in cross-plane direction is 0.4 ps while in in-plane
direction is 0.8 ps, and they are temperature independent.
Since the short-range acoustic-phonon contributions corre-
spond to energy transfers between neighboring atoms, the
difference in the relaxation times is consistent with the fact
that bond length in in-plane direction is generally larger than
in cross-plane direction. The long-range acoustic-phonon
contributions dominate the lattice thermal conductivity and
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FIG. 4. �Color online� Typical HCACF with respect to time at
300 K before �insert� and after Fourier filtering.
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roughly exhibit T−1 dependence in both directions, indicating
that the dominant phonon-scattering mechanism should be
three-phonon Umklapp process in the temperature range of
interest in both directions, which limits the thermal conduc-
tivity of the bulk Bi2Te3. The relaxation times for long-range
acoustic phonons in cross-plane direction are generally
smaller than in in-plane direction over the temperature range,
indicating Umklapp scattering is larger in the cross-plane
direction. In Fig. 5, the plot of �l vs. temperature is shown
and compared to experiments, good overall agreement is
seen in both directions. Compared to Huang and Kaviany’s
results,5 the lattice thermal conductivity predicted from their
classical potentials are generally larger than the values ob-
tained here for both directions, which could be attributed to
the fact that the three-body interactions in their potentials
might bring in more rigid bonds. On the other hand, the
predicted in-plane lattice thermal conductivities are about
15–20% less than the experimental values. This underestima-
tion indicates the bond strength in in-plane direction pro-
duced by the fitted classical potentials might be less than in
reality. Despite the underestimation, the fitted potential suc-
cessfully reproduced the relative strengths of the lattice scat-
tering in in-plane and cross-plane directions together with
their temperature dependence. As a result, the lattice thermal

conductivities in the cross plane is smaller than in the in-
plane values, indicating that the lattice scattering in the cross
plane is larger. This is due to the different anharmonicities
originated from different bonding natures along the two di-
rections �as can be seen in the fitted potentials� and differ-
ence in mass of Bi and Te atoms which can result in large
mismatch of available phonon modes of different atoms in
the cross plane, which induces stronger lattice scattering.

V. DISCUSSIONS AND CONCLUSIONS

In conclusion, we use the pseudopotential method based
on density-functional theory with LDA to characterize the
electronic structures of Bi2Te3. We then develop the two-
body interatomic potentials based on which the calculated
elastic constants and phonon DOS agree well with the ex-
periments and ab initio calculations, indicating that the de-
veloped potentials are suitable in describing the harmonic
behaviors of Bi2Te3 and can well capture the phonon trans-
port nature within. By utilizing this fitted potential, molecu-
lar dynamics simulations are performed and the lattice ther-
mal conductivities are reproduced over a temperature range
from 150 to 500 K using Green-Kubo method, which gener-
ally reveal an Umklapp process for the bulk. Close agree-
ment with experiment is seen. The obtained results suggest
that the low lattice thermal conductivity of Bi2Te3 is a result
of weak bondings among Bi and Te atoms while the aniso-
tropic phonon transport in Bi2Te3 stems from the difference
in elastic and anharmonic properties along in-plane and
cross-plane directions. Besides the success of our simple
two-body interatomic potential form in reproducing thermal
transport process in bulk, it can also allow for further phonon
transport studies in Bi2Te3-based nanostructures and alloys,
which will be reported in subsequent works.
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